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excluding the three sections u = 0, v = 0 and u = v as 
mentioned. Some problems, however, need further 
attention. 

The identification of peaks in the (estimated) 
double Patterson function may be executed in several 
ways. Using more strong triplets results in more 
reliably identified peaks. As mentioned, all triplets 
may be included in the double Patterson function 
(10). The number of identified peaks is determined 
by some criterion in the identification method, such 
as height and sharpness of the peak. This criterion 
should be strengthened as more peaks are identified, 
leading to better estimated triplets. 

When a number of peaks in the double Patterson 
function are identified, the corresponding triangles in 
the true structure may have interatomic vectors in 
common. By this partial overlap, the number of 
terms in the expression for the /3, values, (5), 
decreases. In other words, a collection of triangles 
from the double Patterson function must be 
assembled into some group of interatomic vectors in 
order to compute the ft ,  values with (5). It is not yet 
clear how this assembling of triangles of atoms into 
partially overlapping triangles can be done. It 
is expected that for this higher Patterson functions 
and higher multiplets are needed. Also, the single 
Patterson function may serve as an indication for 
this partial overlap of triangles. 

Although the true double Patterson function fixes 
the enantiomorph, the approximated one, (11), does 
not do so. For this approximated double Patterson 
function, there are pairs of peaks (u,v) and ( - u , -  v). 
It may be assumed that by a choice of only one of 
the two peaks (and the other corresponding five 

peaks as mentioned above), the enantiomorph may 
be fixed by the first choice of the strongest non-origin 
peak. In the triplet expectation values computed by 
(8), this choice of enantiomorph will also yield triplet 
values in which the enantiomorph is fixed up to some 
accuracy; this also holds for the recomputed double 
Patterson function (10). From that moment on, of a 
pair of peaks (u,v) and ( - u , -  v), one will be larger 
than the other and the largest peak is, of course, to 
be preferred. In this way, by choice of the first 
strongest peak, the enantiomorph ambiguity may be 
solved. 

The problems mentioned make application of the 
formulae presented to standard structure-solution 
methods difficult. Higher-order Patterson functions 
(Giacovazzo, 1980; Vaughan, 1958) may also be 
considered in order to solve these problems. 

The author thanks Dr R. Peschar for many useful 
discussions. 
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Abstract 

A method is proposed to correct for the dynamical 
electron diffraction effect in crystal structure analy- 
sis. A rough structure model is first obtained by 
conventional structure-analysis methods neglecting 
the dynamical diffraction effect. From the rough 
structure model, multislice calculations are used to 
estimate the crystal thickness through the observed 
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dynamical diffraction wave amplitudes. With this 
estimated thickness, the observed diffraction wave 
amplitudes are calibrated to give a set of fictitious 
observed kinematic structure-factor magnitudes. 
Based on such a set of magnitudes, a traditional 
least-squares procedure is used to refine structural 
parameters. The reliability of the result is checked by 
the consistency between the observed dynamical 
diffraction wave amplitudes and those found from 
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the multislice calculation. The process can be made 
iterative. Tests were performed with two known 
structures, Bi-2212 and Pb-doped Bi-2223 high-T~ 
superconductors, and satisfactory results were 
obtained. 

Introduction 

It is well known that the dynamical diffraction effect 
hinders the use of electron diffraction in crystal 
structure analysis. However, as pointed out by 
Dorset, Tivol & Turner (1992), the dynamical pertur- 
bations to the diffracted beams are first expressed as 
phase distortions before the wave amplitudes change 
much from their kinematical values. This means that 
in practice it is still possible to treat a set of electron 
diffraction data kinematically with traditional 
methods to obtain a rough structure. In fact, kine- 
matic electron diffraction analysis has been success- 
fully applied to solve a number of crystal struc- 
tures, including some unknown incommensurate 
modulated structures (Dorset, 1993, and references 
therein; Xiang, Fan, Wu, Li & Pan, 1990; Mo et al., 
1992). On the other hand, given a structure model, it 
is easier to take into account the dynamical diffrac- 
tion effect and apply the result to refine the structure. 
Dorset et al. (1992) showed that when a structure 
model is available it is possible to estimate the 
sample thickness through the observed dynamical 
diffraction data using multislice calculations. This 
leads to a better match between the observed and 
calculated structure-factor magnitudes. In this paper, 
it is shown that the estimated sample thickness can 
be used to calibrate the observed dynamical diffrac- 
tion data to give a set of kinematical structure-factor 
magnitudes. The latter can then be used in an ordi- 
nary least-squares procedure to refine the structure 
model. 

The method 

Given a structure model and the sample thickness, 
one can obtain a set of dynamical diffraction wave 
amplitudes IQ~(H)I by multislice calculations (see 
Cowley, 1981). By changing the thickness in a wide 
range with small interval, say from 0 to 200 A, with 
intervals of 5 A., an optimum thickness can be found 
that leads to the best match between the calculated, 
IQ~(I-I)I, and the observed, [Oo(H)l, dynamical dif- 
fraction wave amplitudes. Let F~(H) denote structure 
factors calculated from the structure model and 
Fo(H) denote the fictitious observed structure factors, 
the magnitudes of which are needed for carrying 
out an ordinary least-squares structure refinement. 
Obviously, if the structure model is essentially cor- 
rect, then, for each particular reflection, the relation 
between IFo(H)[ and [Qo(H)I should be about the 
same as that between IFc(H) I and bQ~(H) I. Hence, 

we can calculate approximately the value of IFo(l-l)l 
f r o m  

IFo(H)l a -  IOo(H)l 2=  [F~(H)I 2 -  IQ~(H)I 2, (1) 

that is 

lEo(H)[ 2=  IF~(l-l)l 2 -  Iac(H)l 2 + IQo(H)I 2. (2) 

With the values so obtained, the initial structure 
model can be refined by an ordinary least-squares 
procedure. The refined structure model is then used 
to derive a new (refined) sample thickness and to 
calculate new values of IQ~(H)I and IF~(H)I. This 
leads to a new set of IFo(H)l from (2). New cycles of 
least-squares refinement can then be carried out. The 
whole process is summarized in Fig. 1. 

Tests and results 

Two known incommensurate modulated structures 
of high-T~ superconducting phases, Bi-2212 and 
Pb-doped Bi-2223, were used for the test calcula- 
tions. Since the testing structures are four- 
dimensional periodic structures, the multislice calcu- 
lation is slightly modified as described in the 
Appendix. On the other hand, since our method is 
proposed not only for use with incommensurate 
structures and, in the following examples, the intensi- 
ties as well as the effects of dynamical diffraction of 
the satellite reflection are relatively weak in compari- 
son with those of the main reflections, our test 
calculations were carried out with only main reflec- 
tions. 

1. Bi-2212 phase (Fu et al., 1993) 

The structure belongs to the superspace group 
NBbmb ~r~ with unit-cell parameters a = 5 . 4 0 ,  b = 5 . 3 9 ,  
c = 30.60 A, and modulation wave vector q = 0.21b* 
+ e*. Intensities of 109 Oklm reflections, including 31 
main reflections and 78 satellites, were measured 
from the electron diffraction pattern taken with an 
H-9000 electron microscope operated at 300 kV. The 
incident electron beam is parallel to the a axis. The 
slice thickness Ax is chosen for convenience as equal 
to the length of the a axis, 5.40 ,~. Multislice calcu- 
lations were performed with different sample 
thicknesses ranging from 1 slice to 50 slices with an 
interval of 1 slice. The optimum thickness was 18 

l struotorol I samplo I ~ I~oa~t-sq ..... I 

| ! 
Fig. 1. Flow chart of the structure refinement procedure taking 

account of the dynamical diffraction effect. 
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Table 1. The 20 reflections with largest differences 
between IQo(H)I and [F~(H)I for  Bi-2212 

IQc(a)l 
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Table 2. The 20 reflections with largest differences 
between IOo(H)l and IF~(H)I for  Pb-doped Bi-2223 

IQ~(H)I 

k l m IQo(H)I [F~(H)I Cycle 0 Cycle 1 Cycle 2 Cycle 3 k l m [Oo(H)l IF~(H)[ Cycle 0 Cycle 1 

0 6 0 34.42 2.16 2.18 1.55 16.43 19.18 4 0 0 251.80 862.28 6 4 4 . 4 1  645.51 
0 2 0 53.29 27.00 28.60 30.83 37.70 40.50 0 10 0 541.50 412.19 400.84 399.68 
0 8 0 63.60 40.44 42.30 42.70 49.62 50.84 4 2 0 248.00 1 4 3 . 5 0  1 0 7 . 8 9  109.35 
0 4 0 32.52 13.41 14.40 14.53 30.63 32.51 0 22 0 348.10 269.64 237.44 236.06 
0 18 0 28.40 12.78 11.44 13.79 19.40 16.61 2 0 0 660.10 7 3 4 . 8 1  704.93 700.81 
0 12 0 44.99 60.00 61.27 61.27 44.84 46.91 4 14 0 100.30 1 6 8 . 3 2  1 0 6 . 1 5  108.76 
2 0 0 51.77 66.07 68.11 68.45 66.24 65.19 4 20 0 64.10 131.51 66.16 66.64 
4 0 0 10.81 21.93 14.04 14.06 14.63 15.52 0 8 0 271.90 210.89 204.26 211.75 
4 2 0 8.43 19.48 12.29 11.81 10.75 9.82 0 14 0 461.20 4 0 5 . 4 1  388.53 397.30 
0 14 0 32.16 21.24 21.11 23.24 38.60 38.10 2 4 0 268.30 216.35 207.25 202.80 
2 8 0 34.77 24.28 24.17 28.94 31.19 32.86 4 4 0 102.30 51.84 38.67 36.54 
2 6 0 17.17 7.87 8.02 11.00 13.38 17.62 0 12 0 485.60 437.78 423.17 421.67 
0 20 0 15.53 23.80 18.73 18.12 10.53 12.56 4 18 0 64.60 109.94 60.50 59.78 
0 22 0 14.25 7.36 5.06 5.66 1.46 4.38 0 4 0 311.50 356.52 3 4 7 . 0 1  334.85 
2 20 0 10.11 3.32 2.08 2.58 4.47 6.02 4 12 0 183.50 139.25 91.81 91.39 
2 10 0 27.23 21.31 20.63 21.45 22.90 24.63 2 26 0 107.90 1 5 1 . 0 5  1 0 4 . 7 8  107.16 
0 16 0 29.85 35.48 33.39 32.56 38.38 39.67 4 10 0 136.80 1 7 9 . 0 6  1 2 3 . 5 6  123.23 
4 6 0 4.72 0.00 5.62 4.86 4.84 3.58 0 28 0 81.20 121.80 90.93 91.99 
0 24 0 5.40 9.99 5.43 6.69 6.73 6.37 4 16 0 54.50 94.74 56.44 54.17 
2 12 0 17.02 13.07 12.16 13.55 15.08 17.81 2 10 0 391.10 431.30 405.22 407.44 
R factor 0.4574 0.4104 0.3755 0.2474 0.2136 R factor 0.3391 0.2605 0.2569 
Number of slices 0 18 19 20 21 Number of slices 0 13 13 
Thickness (A) 0 97.20 1 0 2 . 6 0  1 0 8 . 0 0  113.40 Thickness (A) 0 71.37 71.37 

R = Y.IQo(H) - kF¢(l ' l ) l /Y.IOo(H)l  R = Y.IQo(I-I) - kFc(H)[/Y.IQo(I ' i )I  
o r  H H o r  H H 

R = Y.IQo(H) - k Q c ( H ) I / Y . I Q o ( H ) [ .  R = Y I Q o ( H ) -  kQ~(H)[ /Y . IQo(H) I .  
H H H H 

o r  

k = YIQo(H)Fc(H)I/ZIFc(H)I ~ k = Y.IQo(I-I)F~(H)I/ZIF~(I'I)I z 
+/ H or H H 

k = Y.IQo(H)Qc(H)I/Y.IQc(H)I 2. k = Y.IQo(H)Qc(H)I/F.IQ~(H)I 2. 
H H H H 

slices. Table 1 lists the 20 reflections with the largest 
differences between [Qo(H)I a n d  IF~(H)[. The R 
factor, 

R = }-'. I ao (H) l -  IFc(n)[/~ Iao(H), 
H H 

calculated with Ax = 0 and Ax = 18 slices for these 
20 reflections is 0.457 and 0.410, respectively. With 
Ax = 18 slices, a set of I Fo(H)l is derived from (2) 
and used in a least-squares structure refinement. This 
led to a new optimum thickness of 19 slices and a 
new R factor of 0.376 for the 20 reflections (see 
'cycle 1' in Table 1). The procedure converged finally 
at a Ax value of 21 slices and an R factor of 0.214 for 
the 20 reflections. 

2. Pb-doped Bi-2223 phase (Mo et al., 1992) 

The structure belongs to the superspace group 
e B b m b  1T~ with unit-cell parameters a = 5.49, b = 5.41, 
c = 37.1 A and modulation wave vector q = 0.117b*. 
Intensities of 112 Oklm reflections including 42 main 
reflections and 70 satellites were measured from the 
electron diffraction pattern taken with an H-9000 
electron microsope operated at 300 kV. The incident 
electon beam is parallel to the a axis. The slice 
thickness Ax  is chosen as 5.49 A. Calculation results 

are listed in Table 2. The final sample thickness was 
13 slices. The R factor for the 20 reflections with 
largest differences of IQo(H)l and IQc(H)l decreased 
from 0.339 to 0.257. It should be noticed that the 
starting structure model used in this example has 
already been refined by the least-squares procedure 
neglecting the dynamical diffraction effect. This 
means that the reduction of the R factor is mainly 
due to the correction of the dynamical diffraction 
effect. 

C o n c l u d i n g  r e m a r k s  

The test results show that the method is useful. 
It provides a simple way to take account of the 
dynamical electron diffraction effect in structure 
refinement. While the two test samples are incom- 
mensurate modulated structures, the method is appli- 
cable to ordinary structures and is easier to apply in 
those cases. 

A P P E N D I X  

In our treatment, it is assumed that no modulation 
occurs along the a axis, which is parallel to the 
incident electron beam. For a one-dimensional 
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incommensurate modulated structure, the reciprocal 
vector H of a main or satellite reflection can be 
expressed in three-dimensional space as 

H = ha*  + kb*  + l c*  + mq, (A 1) 

where q = tea* + fib* + yc* with at least one of the 
coefficients a, fl or y irrational. In the present case, 
q = f ib*+ yc* with fl irrational. The vector H in 
(A1) is not a vector of a three-dimensional lattice, 
since there is no exact periodicity in the real three- 
dimensional space. It is more convenient to use the 
multidimensional description (de Wolff, 1974) for 
incommensurate modulated structures. With this we 
can define a four-dimensional reciprocal lattice 
having unit vectors 

bl = a*, bz = b*,  b3 = C* and b4 = q + d. 

(A2) 

Here d is a unit vector perpendicular to the usual 
three-dimensional space. A reciprocal-lattice vector 
in the four-dimensional space can then be written as 

I2I = hbl + kb2 + lb3 + mb4. (A3) 

Comparison of (A1) and (A3) shows that H is the 
projection of I:I along the direction d onto the three- 
dimensional space. In other words, the whole three- 
dimensional diffraction pattern from an incommen- 
surate modulated structure may be imagined as the 
projection of a hypothetical four-dimensional 
weighted reciprocal lattice along the direction d onto 
the usual three-dimensional space. Accordingly, an 
incommensurate modulated structure, in our case 
represented as the electron potential distribution 
without exact periodicity, can be regarded as a hypo- 
thetical four-dimensional periodic electron potential 
distribution cut by a hyperplane perpendicular to 
d, i.e. the three-dimensional physical space. Unit 
vectors of the four-dimensional direct lattice are 
given as 

al = a, a2 = b -  fd ,  a 3 = c -  yd and a4 = d. 

(A4) 

The four-dimensional periodic electrostatic potential 
distribution is denoted by ~(x~, x2, x3, )Ca), where Xl, 
x2, x3 and x4 are coordinates in the four-dimensional 
direct space. The transmission function for a phase 
object with incommensurate modulation can be 
obtained by cutting that for the corresponding high- 

dimensional crystal. In the present case, the trans- 
mission function for one slice of the sample crystal is 
written as 

Cq(x2, x3, x4) = C exp [ -  io'~(x2, x3, x4)]. (AS) 

Here, t~ denotes the operation of cutting a function 
with the three-dimensional physical space; q(xz, x3, 
x4) is the transmission function for the four- 
dimensional crystal; o- is an interaction term depend- 
ing on the electron wavelength; ~(x2, x3, x4) is the 
projection of electrostatic potential distribution 
along the a axis. The four-dimensional Fourier trans- 
form of the transmission function is written as 

O(H) = ~. ~. ~. Q ( H ) 6 ( H -  kb* - It* - mq), (A6) 
k 1 m 

where H is a vector in reciprocal space. When H = 
kb* + lc* + mq, the propagation function for the dis- 
tance between two adjacent slices P(H) is given by 

P(k,l,m) = exp {iTraAx[(k + flm)2/b 2 + (l + Tin)Z/c2]}, 

(A7) 

where A is the electron wavelength while dx is the 
slice thickness. According to the conventional multi- 
slice method, n-beam dynamical calculations 
(Cowley, 1981) for a modulated structure divided 
into n slices can be carried out in reciprocal space as 
below: 

Qc(H) = {O(H)*[ (O(H)*...*[{O(H)* 
n - !  2 

x [~(H)P(H)]}P(H)]...)P(H)I}P(H), (A8) 
1 1 2 n - I  

where * denotes convolution. The formula is easily 
extended to higher-dimensional cases. 

R e f e r e n c e s  

COWLEY, J. M. (1981). Diffraction Physics, 2nd ed., pp. 225-247. 
Amsterdam: North-Holland. 

DORSET, D. L. (1993). Microsc. Soc. Am. Bull. 23, 99-108. 
DORSET, D. L., TIVOL, W. F. & TURNER, J. N. (1992). Acta Cryst. 

A48, 562-568. 
Fu, Z. Q., HUANG, D. X., Ll, F. H., Ll, J. Q., ZnAO, Z. X., 

CHENG, T. Z. & FAN, H. F. (1993). In preparation. 
Mo, Y. D., CHENG, T. Z., FAN, H. F., LI, J. Q., SHA, B. D., 

ZHENG, C. D., L1, F. H. & ZHAO, Z. X. (1992). Supercond. Sci. 
Technol. 5, 69-72. 

WOLFF, P. M. DE (1974). Acta Cryst. A30, 777-785. 
XIANG, S. B., FAN, H. F., Wu, X. Y., L1, F. H. & PAN, Q. (1990). 

Acta Cryst. A46, 929-934. 


